Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

Model Based Reusable and Reliable Software Validation for Functional Coverage using Virtual ECUs

2007-04-16
2007-01-1742
In embedded software world, development and testing are becoming far more complex with growing functionality and fail safe strategies. As a result of that, model-based software development is getting increasingly popular in capturing the functional requirements and auto generating the code from these validated models to avoid any functional deficiency. However, the complexity in the model may not be correctly interpreted by the code generation tool and may result to an incorrect code behavior. In this paper, a methodology has been proposed and implemented to validate the generated code against the models. Simulation test scripts are recorded in the modeling environment to generate the desired set of test inputs. These input scripts are designed to get complete transition and state exposure to maximize the functional coverage. With these test scripts, expected outputs are recorded for downstream validation in the simulation environment with mature models.
Technical Paper

Comparison of Wind Tunnel Configurations for Testing Closed-Wheel Race Cars: A CFD Study

2006-12-05
2006-01-3620
This paper investigates the aerodynamic simulation accuracy of several types of wind tunnel test sections. Computational simulations were performed with a closed wheel race car in an 11.0 m2 adaptive wall, a 16.8 m2 open jet, and a 29.7 m2 slotted wall test section, corresponding to model blockage ratios of 20.9%, 13.7%, and 7.7%, respectively. These are compared to a simulation performed in a nearly interference-free condition having a blockage ratio of 0.05%, which for practical purposes of comparison, is considered a free air condition. The results demonstrate that the adaptive wall most closely simulates the free air condition without the need for interference corrections. In addition to this advantage, the significantly smaller size of the adaptive wall test section offers lower capital and operating costs.
Technical Paper

A Semi-Empirical Model for Fast Residual Gas Fraction Estimation in Gasoline Engines

2006-10-16
2006-01-3236
Accurate accounting for fresh charge (fuel and air) along with trapped RGF is essential for the subsequent thermodynamic analysis of combustion in gasoline engines as well as for on-line and real-time quantification as relevant to engine calibration and control. Cost and complexity of such techniques renders direct measurement of RGF impractical for running engines. In this paper, an empirically-based approach is proposed for on-line RGF, based on an existing semi-empirical model [1]. The model developed expands the range over which the semi-empirical model is valid and further improves its accuracy. The model was rigorously validated against a well correlated GT-POWER model as well as results from 1D gas exchange model [2]. Overall, using this model, RGF estimation error was within ∼1.5% for a wide range of engine operating conditions. The model will be implemented in Dyno development and calibration at Chrysler Group.
Technical Paper

Advancing the State of Strong Hybrid Technology

2006-10-16
2006-21-0058
As the hybrid automotive market becomes quickly saturated with highly competitive products and vehicles, auto manufacturers struggle with business models and the combination of current manufacturing with next generation development. The hybrid development cooperation amongst General Motors, DaimlerChrysler, and BMW offers a new business model that promotes the advancement of the state of strong hybrid technology while maintaining the strong global leadership and competition.
Technical Paper

Wissler Simulations of a Liquid Cooled and Ventilation Garment (LCVG) for Extravehicular Activity (EVA)

2006-07-17
2006-01-2238
In order to provide effective cooling for astronauts during extravehicular activities (EVAs), a liquid cooling and ventilation garment (LCVG) is used to remove heat by a series of tubes through which cooling water is circulated. To better predict the effectiveness of the LCVG and determine possible modifications to improve performance, computer simulations dealing with the interaction of the cooling garment with the human body have been run using the Wissler Human Thermal Model. Simulations have been conducted to predict the heat removal rate for various liquid cooled garment configurations. The current LCVG uses 48 cooling tubes woven into a fabric with cooling water flowing through the tubes. The purpose of the current project is to decrease the overall weight of the LCVG system. In order to achieve this weight reduction, advances in the garment heat removal rates need to be obtained.
Technical Paper

Study on Simplified Finite Element Simulation Approaches of Fastened Joints

2006-04-03
2006-01-1268
In this paper, mechanism of fastened joints is described; numerical analyses and testing calibrations are conducted for the possible simplified finite element simulation approaches of the joints; and the best simplified approach is recommended. The approaches cover variations of element types and different ways that the joints are connected. The element types include rigid elements, deformable bar elements, solid elements, shell elements and combinations of these element types. The different ways that the joints are connected include connections of one row of nodes, two row of nodes and alternate nodes in the first and second rows. These simplified simulation approaches are numerically evaluated on a joint of two plates connected by a single fastener. The fundamental loads, bending with shear, shear and tension are applied in the numerical analyses. A detailed model including contact and clamp load are analyzed simultaneously to provide “accurate results”.
Technical Paper

Reliability and Robust Design of Automotive Thermal Systems - A Federated Approach

2006-04-03
2006-01-1576
Today automotive thermal systems development is a joint effort between an OEM and its suppliers. This paper presents a pilot program showing how OEMs and suppliers can jointly develop a reliable and robust thermal system using CAE tools over the internet. Federated Intelligent Product Environment (FIPER) has been used to establish B2B communication between OEMs and suppliers. Suppliers remotely run thermal systems computer models at the OEM site using the FIPER B2B feature.
Technical Paper

Parametric Analysis for the Design of Compact Heat Exchangers

2006-04-03
2006-01-1578
In this paper, the effects of heat exchanger design parameters are investigated. The ease study being investigated here is the parametric analysis of automotive radiator where the hot fluid is the engine coolant and the cold fluid is the ambient air. Key parameters that are considered are the air density, fin thickness, fins height and air temperature. Effect of air density may be a concern since heat exchangers are usually designed, for automotive applications, under atmospheric pressure conditions. Changes in altitude will cause a change in air density. Therefore, the performance of cooling system may be affected by elevation. In this analysis, however, it is shown that the change in air density has very limited or no effect on the cooling system. The fin dimensions play a key role in the overall effectiveness of a heat exchanger. Some cost saving ideas may include reducing fin dimensions such as fin thickness or fin height.
Technical Paper

Cam-phasing Optimization Using Artificial Neural Networks as Surrogate Models-Fuel Consumption and NOx Emissions

2006-04-03
2006-01-1512
Cam-phasing is increasingly considered as a feasible Variable Valve Timing (VVT) technology for production engines. Additional independent control variables in a dual-independent VVT engine increase the complexity of the system, and achieving its full benefit depends critically on devising an optimum control strategy. A traditional approach relying on hardware experiments to generate set-point maps for all independent control variables leads to an exponential increase in the number of required tests and prohibitive cost. Instead, this work formulates the task of defining actuator set-points as an optimization problem. In our previous study, an optimization framework was developed and demonstrated with the objective of maximizing torque at full load. This study extends the technique and uses the optimization framework to minimize fuel consumption of a VVT engine at part load.
Technical Paper

Model Based Development and Auto Testing: A Robust Approach for Reliable Automotive Software Development

2006-04-03
2006-01-1420
Automotive electronics and software is getting complex day by day. More and more features and functions are offered and supported by software in place of hardware. Communication is carried out on the CAN bus instead of hard wired circuits. This architectural transition facilitates lots of flexibility, agility and economy in development. However, it introduces risk of unexpected failures due to insufficient testing and million of possible combinations, which can be created by users during the life time of a product. Model based development supports an effective way of handling these complexities during simulation and also provide oracle for its validation. Based on priorities and type of applications, test vectors can be auto generated and can be used for formal verification of the models. These auto-generated test vectors are valuable assets in testing and can be effectively reused for target hardware (ECU) verification.
Technical Paper

Development of an Engine Test Cell for Rapid Evaluation of Advanced Powertrain Technologies using Model-Controlled Dynamometers

2006-04-03
2006-01-1409
Current engine development processes typically involve extensive steady-state and simple transient testing in order to characterize the engine's fuel consumption, emissions, and performance based on several controllable inputs such as throttle, spark advance, and EGR. Steady-state and simple transient testing using idealistic load conditions alone, however, is no longer sufficient to meet powertrain development schedule requirements. Mapping and calibration of an engine under transient operation has become critically important. And, independent engine development utilizing accelerated techniques is becoming more attractive. In order to thoroughly calibrate new engines in accelerated fashion and under realistic transient conditions, more advanced testing is necessary.
Technical Paper

Development of a Computerized Digital Resonance Fatigue Test Controller with Load Feedback Management

2006-04-03
2006-01-1620
In this report, the DCX Stress Lab and the Tool Development & Test Support groups investigated automating a resonant bending crankshaft fatigue test. Fatigue testing, in general, is a laborious process since many samples are needed for analysis. This makes development cost and speed dependant on the component test efficiency. In the case of crankshaft resonant bending testing, both cost and speed are influenced by the manual feedback operation needed to run the current procedure. In order to increase the efficiency of this process, this project sought to automate the following tasks: maintaining the load on the part, reacting to resonance changes in the part, mapping resonance changes, logging the number of cycles, and discerning resonance frequency shift failure modes objectively.
Technical Paper

A Model for On-Line Monitoring of In-Cylinder Residual Gas Fraction (RGF) and Mass Flowrate in Gasoline Engines

2006-04-03
2006-01-0656
In a gasoline engine, the unswept in-cylinder residual gas and introduction of external EGR is one of the important means of controlling engine raw NOx emissions and improving part load fuel economy via reduction of pumping losses. Since the trapped in-cylinder Residual Gas Fraction (RGF, comprised of both internal, and external) significantly affects the combustion process, on-line diagnosis and monitoring of in-cylinder RGF is very important to the understanding of the in-cylinder dilution condition. This is critical during the combustion system development testing and calibration processes. However, on-line measurement of in-cylinder RGF is difficult and requires an expensive exhaust gas analyzer, making it impractical for every application. Other existing methods, based on measured intake and exhaust pressures (steady state or dynamic traces) to calculate gas mass flowrate across the cylinder ports, provide a fast and economical solution to this problem.
Technical Paper

Cam-Phasing Optimization Using Artificial Neural Networks as Surrogate Models-Maximizing Torque Output

2005-10-24
2005-01-3757
Variable Valve Actuation (VVA) technology provides high potential in achieving high performance, low fuel consumption and pollutant reduction. However, more degrees of freedom impose a big challenge for engine characterization and calibration. In this study, a simulation based approach and optimization framework is proposed to optimize the setpoints of multiple independent control variables. Since solving an optimization problem typically requires hundreds of function evaluations, a direct use of the high-fidelity simulation tool leads to the unbearably long computational time. Hence, the Artificial Neural Networks (ANN) are trained with high-fidelity simulation results and used as surrogate models, representing engine's response to different control variable combinations with greatly reduced computational time. To demonstrate the proposed methodology, the cam-phasing strategy at Wide Open Throttle (WOT) is optimized for a dual-independent Variable Valve Timing (VVT) engine.
Technical Paper

Evaluation of Cylinder Pressure Transducer Accuracy based upon Mounting Style, Heat Shields, and Watercooling

2005-10-24
2005-01-3750
This investigation evaluated different pressure transducers in one cylinder to examine the combustion measurement differences between them simultaneously. There were a total of eleven transducers ranging in both diameter and type of transducer (piezo-electric, piezoresistive, and optical). Furthermore, the sensors differed in the methodology for minimizing signal distortion due to temperature. This methodology could take the form of various size mounting passages, heat shields, watercooling or heat transfer paths. To evaluate the sensors, different engine operating conditions were conducted, focusing at full load and low speeds. Other hardware configurations of the same engine family were used to exaggerate the combustion environment, specifically a tumble-motion plate and turbocharging.
Technical Paper

Engine Mount Tuning for Optimal Idle and Road Shake Response of Rear-Wheel-Drive Vehicles

2005-05-16
2005-01-2528
Engine mount tuning is a multi-disciplinary exercise since it affects Idle-shake, Road-shake and powertrain noise response. Engine inertia is often used as a tuned absorber for controlling suspension resonance related road-shake issues. Last but not least, vehicle ride and handling may also be affected by mount tuning. In this work, Torque-Roll-Axis (TRA) decoupling of the rigid powertrain was used as a starting point for mount tuning. Nodal point of flexible powertrain bending was used to define the envelop for transmission mount locations. The frequency corresponding to the decoupled roll mode of the rigid powertrain was then adjusted for idle-shake and road-shake response management. The TRA decoupling procedure, cast as a multi-objective optimization problem, was applied to a body-on-frame sport-utility vehicle powertrain system. The process outlined in this work was verified by exercising a fullvehicle finite element model.
Technical Paper

Theoretical and Practical Aspects of Balancing a V-8 Engine Crankshaft

2005-05-16
2005-01-2454
Crankshafts must be balanced statically and dynamically before being put into service. However, without pistons and connecting-rod assemblies, a non-symmetric crankshaft is not in dynamic balance. Therefore, it is necessary to apply equivalent ring-weights on each of the crankpins of the crankshaft when balancing it on a dynamic balancing machine. The value of the ring weight must be accurately determined, otherwise all advantages that are derived from balancing would be of no avail. This paper analytically examines the theoretical background of this problem. Formulas for calculating the ring weights are derived and presented. These formulas are applicable to a generic class of crankshafts of V-type engines with piston pin offset. Also, practical consideration, such as the design and manufacturing of these ring weights, the method of testing, and correction is addressed.
Technical Paper

Test Methodology to Reduce Axle Whine in a 4WD Vehicle

2005-05-16
2005-01-2403
With the ever increasing popularity of SUV automobiles, studies involving driveline specific problems have grown. One prevalent NVH problem is axle whine associated with the assembled motion transmission error (MTE) of an axle system and the corresponding vibration/acoustic transfer paths into the vehicle. This phenomenon can result in objectionable noise levels in the passenger compartment, ensuing in customer complaints. This work explores the methodology and test methods used to diagnose and solve a field axle whine problem, including the use of cab mount motion transmissibility path analysis, running modes and a detailed MTE best-of-the-best (BOB)/worst-of-the-worst (WOW) study. The in-vehicle axle whine baseline measurements including both vehicle dynamometer and on-road test conditions, along with the countermeasures of axle whine fixes are identified and presented in this paper.
Technical Paper

Attempts for Reduction of Rear Window Buffeting Using CFD

2005-04-11
2005-01-0603
This paper summarizes the major activities of CFD study on rear window buffeting of production vehicles during the past two years at DaimlerChrysler. The focus of the paper is the attempt to find suitable solutions for buffeting suppression using a developed procedure of CFD simulation with commercial software plus FFT acoustic post-processing. The analysis procedure has been validated using three representative production vehicles and good correlation with wind tunnel tests has been attained which has gained the confidence in solving the buffeting problem. Several attempts have been proposed and tried to find solution for buffeting reduction. Some of them are promising, but feasibility and manufacturability still need discussion. In order to find suitable solution for buffeting reduction, more basic research is necessary, more ideas should be collected, and more joint efforts of CFD and testing are imperative.
Technical Paper

Uncertainty Analysis of Aerodynamic Coefficients in an Automotive Wind Tunnel

2005-04-11
2005-01-0870
This paper presents an uncertainty analysis of aerodynamic force and moment coefficients for production vehicles in an automotive wind tunnel. The analysis uses a Monte Carlo numerical simulation technique. Emphasis is placed on defining the elemental random and systematic uncertainties from the tunnel’s instrumentation, understanding how they propagate through the data reduction equations and under what conditions specific elemental error sources are or are not important, and how the approach to data reduction influences the overall uncertainties in the coefficients. The results of the analysis are used to address the issue of averaging time in the context of maintaining a maximum allowable uncertainty level. Also, a maximum error requirement in the vehicle’s installation is suggested to allow the use of rapid but approximate vehicle alignment methods without incurring errors that exceed the data uncertainty. Observed reproducibility results are presented spanning a 16 month period.
X